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Abstract

We present an analysis of important claims made in the Avalanche whitepaper Scalable
and Probabilistic Leaderless BFT Consensus through Metastability, Team Rocket et al. [16].
We find that the consensus protocols described there do not guarantee safety nor liveness
and that their conclusions are based on mathematically unsound arguments, pseudo-profound
bullshit, and circulus in probando. We point out that already a small proportion of mali-
cious nodes can keep the consensus protocol in a metastable state leading to agreement or
termination failures. At various places, the arguments in [16] do not follow any scientific
standards and can be considered at best inaccurate or misleading.

1 Introduction

Consensus algorithms are a class of algorithms that aim to provide a common decision for all
nodes in a networked system and satisfy the following conditions:

1. Agreement: all nodes choose the same value.

2. Termination: all non-faulty nodes eventually decide.

3. Integrity: if the majority of the non-faulty nodes proposes a common value v, then any
non-faulty node must choose v.1

The paper [16] presents several consensus algorithms that are based on majority dynamics or
voter-type models. Let us briefly explain what the main idea of this protocol class is. Essentially
every node samples at each discrete time step a random subset of other nodes and queries their
states or colors. If the number of answers for one state is above a certain threshold α the
node adapts this state. Sampling only a small part (k randomly chosen nodes) of the network

∗AshMisty@protonmail.com; Nintemoto Labs, 11-1 Hokotate-cho, Manitoba, Minami-ku, Kyoto 601-8501,
Japan

1Variations of integrity may be appropriate and the choice of definition may depend on the applications. The
integrity condition is also known as validity in the literature.
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makes the protocol scalable and the fact that each node queries locally allows certain degrees of
asynchronicity in the protocol. These two advantages come however at a price. If a node samples
only a small part of the network in the presence of f malicious nodes at each round there will
be a positive fraction that queries at least as many malicious than correct nodes.2 Moreover,
these kinds of protocols can usually admit no more than O(

√
n) adversarial nodes; otherwise,

the adversary would be able to create an agreement or termination failure, see Section 5. Last
but not least, these kinds of protocols in a permission-less network are highly vulnerable against
Sybil attacks as an attacker could easily spawn numerous nodes to push f above n/2.

Despite the vast literature on this subject no references are given in [16]; we refer to [8, 9,
5, 12] and references therein but note that there are hundreds of papers in this research field.
Also note that Team Rocket claims to

[...] introduce a brand new family of consensus protocols, based on randomized sam-
pling and metastable decision. [16, page 2].

The overall whitepaper quality in the cryptocurrency environment is quite low. We are
planning to continue our work, exposing bad academic research in this area. What made us
start with Avalanche is the particularly enormous gap between their level of bragging, e.g. see
Section 7, and the actual quality of their research.3

2 Notations and Definitions

The number of nodes is denoted by n and f is the number of adversarial nodes. The nc := n−f
non-adversarial nodes are called correct nodes. We speak of ε-safety if agreement among the
correct nodes is achieved with probability at least 1− ε. We speak of ε-liveness if the protocol
terminates in finite time with probability 1 − ε.4 These notations correspond to probabilistic
versions of agreement and termination.

In Slush (the “foundation” of the Snow family), a node starts out initially in an uncolored
state. Upon receiving a transaction from a client, an uncolored node updates its own color to
the one carried in the transaction and initiates a first query. To perform a query, a node picks a
small, constant sized, k, sample of the network uniformly at random, and sends a query message.
Upon receiving a query, an uncolored node adopts the color in the query, responds with that
color, and initiates its own query, whereas a colored node simply responds with its current color.
In other words, a node either obtains its color externally or from the first node that queries it.
Let us define the initial color of a state as its first color and define γ as the initial proportion of
red-colored correct nodes. Note here that γ is not a parameter of the protocol.

2For instance, if the number of total nodes n = 1000, f = 333, and k = 10, the probability of querying
(with replacement) more than k/2 = 5 malicious nodes is P (X ≥ 5) ≈ 21% where X is a binomial distribution
Binom(10, 1/3). In other words, an adversary can control (together with its own nodes) about 47% of all nodes.

3If you want to support us in this endeavor you can send BTC to the following address:
333cKk3BxfUVg9NXrCi39NpQy81SRLtzbk

4 [16] only consider upper and lower bounds for liveness.
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Once the querying node collects k responses, it checks if a fraction ≥ α are for the same
color, where α > bk/2c is a protocol parameter. If the α threshold is met and the sampled
color differs from the node’s own color, the node flips to that color. It then goes back to the
query step, and initiates a subsequent round of query, for a total of m rounds. Finally, the node
decides the color it ended up with at time m.

Snowflake augments Slush with a single counter that captures the strength of a node’s con-
viction in its current color. This per-node counter stores how many consecutive samples of the
network by that node have all yielded the same color. A node accepts the current color when
its counter exceeds β, another security parameter. More precisely, Snowflake incorporates the
following modification:

1. Each node maintains a counter cnt;

2. Upon every color change, the node resets cnt to 0;

3. Upon every successful query that yields ≥ α responses for the same color as the node, the
node increments cnt;

4. A node resets cnt to zero if no color appears more than α times in the responses.5

Snowball augments Snowflake with confidence counters that capture the number of queries
that have yielded a threshold result for their corresponding color. A node decides if it gets β
consecutive chits for a color. However, it only changes preference based on the total accrued
confidence. The differences between Snowflake and Snowball are as follows:

1. Upon every successful query, the node increments its confidence counter for that color.

2. A node switches colors when the confidence in its current color becomes lower than the
confidence value of the new color.

The above description of the Snow protocols is essentially copied word by word from [16]. We
invite the reader to check the pseudo-codes given in [16] for a better understanding.

3 Non-results of [16]

In the introduction Team Rocket writes:

Analysis shows that this metastable mechanism is powerful: it can move a large
network to an irreversible state quickly, where the irreversibility implies that a suffi-
ciently large portion of the network has accepted a proposal and a conflicting proposal
will not be accepted with any higher than negligible (ε) probability. [16, page1]

5This last point is in the pseudo-code in [16, Figure 5] and not in the corresponding plain text. This may be
explained by the fact that a “typo” of [15] was corrected in the pseudo-code only.
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They state on their webpage, [1]:

Avalanche consensus is a breakthrough consensus protocol that solves some of the
issues inherent in the protocols that come before it. It is regarded as the best-of-
both worlds6 because it achieves high performance, it is suitable for permissionless
settings, and it is able to scale to thousands if not millions of participants.

Let us investigate what [16] claims to have proven to support the above claims. We quote
their main results [16, page 2].

Let the system be parametrized for an ε safety failure under a maximum expected f
number of adversarial nodes. Let O(log n) < tmax < ∞ be the upper bound of the
execution of the protocols. The Snow protocols then provide the following guarantees:

P1. Safety. When decisions are made by any two correct nodes, they decide on
conflicting transactions with negligible probability (≤ ε).

P2. Liveness (Upper Bound). Snow protocols terminate with a strictly positive
probability within tmax rounds.

P3. Liveness (Lower Bound). If f ≤ O(
√
n), then the Snow protocols terminate

with high probability (≥ 1− ε) in O(log n) rounds.

The claim P1 is circular since the first sentence of the quote already supposes that the
system is ε-safe; if the system is ε-safe then it is ε-safe. The condition O(log n) < tmax < ∞
makes absolutely no sense, since the O-notation gives upper and not lower bounds, e.g. see [19].
Now, P2 claims that the protocols terminate with positive probability within a finite time. This
a just the minimal condition of any protocol; if a protocol does never converge in finite time it is
of no use. A result meaningful and worth to be published would be that the protocols terminate
within O(log n) rounds with probability at least 1− ε. Such a statement is, however, in general
wrong for the Snow protocols.

P3 seems to be common knowledge for these kind of consensus protocols, however it fails for
f ≥ d

√
n log log ne, see Section 5. The interesting results would be to understand liveness and

safety with more than
√
n or even a linear proportion of adversarial nodes. We also note that

for practicable purposes not only the asymptotic behavior is of importance but also the value
of the constants; a point that is completely ignored in [16].

Interesting to note that the above “results” are stated for the Snow protocols but also holds
“true” for Slush, which is even according to the authors of [16] unsafe. This raises the question
of why there are no results presented on the Snowflake or Snowball protocols in [16]. The answer
is that there are no results on these protocols. In the next section, we see how a classic circular
argument is applied to convince or fool the reader (and the authors themselves?) on the good
performances of these protocols.

6classical and Nakamoto consensus
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4 Circular reasoning

Circular reasoning is a logical fallacy in which the reasoner begins with what they are trying
to end with. Circularity can be difficult to detect if it involves a longer chain of propositions
or arguments and concepts not understood by the reasoners. We have already detected circular
reasoning in the claim P1. This fallacy is extended in the safety study of the protocols. A
correct heuristic7 of the Snow protocols is the following. For any giving set of parameters and
number of malicious nodes f < 1/3n if the initial proportion γ of red nodes is outside an interval
[12 − δ,

1
2 + δ] the probability that an adversary can reach agreement or termination failure is

very low. The reasoning in [16] follows the argument that the initial proportion γ is a parameter
that can be chosen outside this interval [12 − δ,

1
2 + δ] and they conclude safety and liveness of

the protocol. However, the initial proportion γ can not (!) be chosen but is given. The authors
of [16] miss completely the point that a protocol has to guarantee safety and liveness for any
(!) possible initial proportion γ. In other words, it is assumed that the nodes already share the
same colors at the beginning to argue that the protocol reaches consensus among the correct
nodes. These observations were also made in [14].

5 Metastability of the Snow protocol family

In physics, metastability is a stable state of a dynamical system other than the system’s state of
least energy, see [24]. The use of “metastability” in [16] is difficult to understand, see also [11].8

In the setting of stochastic dynamics, one speaks of a metastable state if the system persists for
a long time in this state until it changes to a new equilibrium under the influence of random
fluctuations, see [4]. It seems that the authors of [16] mistook the random fluctuations that
prevent a system to be stuck in metastable states for metastability.

A reasonable definition of metastable states in our setting could be situations where adver-
sarial nodes can stall the protocol for a long time. In [13] this was achieved for a first version of
the Snowball protocol described in [15].9

Even after fixing the typo, which by the way had no impact on the theoretical results
or “proofs” on the protocol10, the protocols are likely to be kept in a metastable state by
an adversary for a long time. Even worse the “correction of the typo” leads to a very bad
convergence speed in other scenarios.

The colors of the nodes in Snowflake and Snowball have the same behavior as the colors in
Slush until a first node becomes decided. We assume that f = dcn1/2e for some c > 0 and that
γ = 0.5. We also note nc = n− f .

7which can also be turned into a rigorous proof
8 For instance “metastable voting mechanism” and “metastable decision” are meaningless terms here.
9https://twitter.com/AlexSkidanov/status/1132384759437332480

10Changing the protocol from an unsafe to a safe version without changing the theoretical considerations, and
claiming that the new version is safe, should make everybody (including the authors) wonder about the validity
of the reasoning.
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In the first round, half of the adversarial nodes answer red and the other half blue. Let γ1
be the number of correct red nodes after the first step. Let us see how a node can be red-colored
in step 1. There are two possibilities:

1. the node was red at the previous step and it queried less than α blue nodes;

2. the node was blue at the previous step and it queried more than α red nodes.

The number of red nodes after the first step can be seen as the sum of independent Bernoulli
distributed random variables. Hence, due to the central limit theorem [20], the distribution
of γ1 can be approximated by a normal distribution N (nc/2, ncσ

2). We use the following tail
estimates for a gaussian random variable Z ∼ N (0, 1): P (Z > z) ≤ 1

z e
−z2/2 for z > 0. Now, if

c > σ,

P
(
γ1 >

nc
2

+ c
√
n
)
≈ P

(
Z >

c
√
n

σ
√
nc

)
(1)

≤
√
nc
n

σ

c
e−

n
nc

c2

2σ2 ≤ e−
n
nc

c2

2σ2 . (2)

If γ1 ∈ [12nc − c
√
n, 12nc − c

√
n] then the adversary can adapt the colors of its nodes such that

half of the total nodes are red and half of them are blue. We now proceed inductively to define
γn for n ≥ 2 and set the corresponding colors of the adversarial nodes. We define the event

Ak :=

{
γk ∈

[
1

2
nc − c

√
n,

1

2
nc + c

√
n

]}
.

For K ∈ N we obtain

P (Ak ∀1 ≤ k ≤ K) ≥
(

1− 2e−
n
nc

c2

2σ2

)K
. (3)

If we choose c2

2σ2 ≥ logK we obtain for K ≥ 4 that

P (Ak ∀1 ≤ k ≤ K) ≥
(

1− 2e−
n
nc

c2

2σ2

)K
>
e−2

2
. (4)

Observation 1: For the Slush protocol there exists a constant p > 0 such that for all choices
of β,K ∈ N there exists an adversarial strategy with f = dlog(K)

√
ne that is able to keep the

colors in balance for at least K steps with probability of at least p.

The above argument may fail for the Snowflake and Snowball protocol since nodes might
decide their colors before K steps. Let us therefore give estimates for the first time a node
decides its color. We fix k = 10, α = 8 and β = 1111. In both protocols a node can only decide

11These are parameter choices made in [16].
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if it obtains more than α red or α blue answers in β consecutive queries. In the language of
probability theory this is known as β runs of a sequence of Bernoulli random variables, see [17].
In fact, in K independent Bernoulli trials with probability of success p, the expected number of
runs of length larger than β is K(1− p)pβ. Now, using Markov’s inequality, [23], we can bound
the probability that at least one node decides before time K by

nc2K(1− p)pβ.

In our example, p ≈ 0.055 and hence (1− p)pβ ≈ 1.2 · 10−14. For n = 10.000 and K = 1.000.000
the probability that at least one nodes decides before 1.000.000 steps is less than 0.0003.

Observation 2:12 We consider a standard parametrization of the Snowflake or Snowball protocol
n = 10.000, k = 10, α = 8 and β = 11. There exists an adversarial strategy with f = d14

√
ne =

1400 such that no correct node decides its color before one million steps with probability at least
e−2

3 .

The above probabilities become larger if the number of adversarial nodes is of linear order.
Agreement failures can be achieved similarly; the adversary keeps the correct nodes in balance
until two correct nodes decide on opposite colors.

6 How to fool yourself or your reader

The academic level of [16] is low. Besides not mentioning the previous relevant work and
the fallacies described above, Team Rocket shows a huge lack of understanding. We tried to
evaluate the validity of several other statements in [16]. However, in many cases, it is difficult if
not impossible to extract non-trivial meaning of the pseudo-profound bullshit [10] and to follow
the reasoning of the authors. In most cases, the “results” are as useful as Magikarp [2]. The
following is only a random sample since a complete treatment would be beyond the scope of this
note.

So let us take a look at one “key” lemma in [16, Appendix]:

Lemma 4. Slush reaches an absorbing state in finite time almost surely.

Team Rocket argues that this lemma is a consequence of their Theorem 3 that involves “com-
plicated” formulas and “fancy” notations. However, this statement is one of the first results in
every lecture about Markov chains, [22]; any finite (time-homogeneous) Markov chain converges
to a stationary distribution, or as in this case to an absorbing state. Moreover, Theorem 3 is
only used at this point; so it seems that Team Rocket wanted to fool or impress the audience
by fancy notations.

Inequality (5) is wrong, it holds for super-martingales and not for sub-martingales. It is
known as the Azuma-Hoeffding inequality, see [18], but given in [16] without any reference.

12We do not label these observations as a “Lemma” since in our opinion they really are observations that every
reasonable master student following a lecture in probability theory should be able to make.
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Note, that this mistake has no impact on the “results” of the paper since inequality (5) is never
used anyway! The same holds true for inequalities (3) and (4).

In the justification of inequality (3) Team Rocket seems to have copied [21] almost success-
fully. However, only writing “D(p−ϕ, p) is the Kullback-Leiber divergence” without adding, as
done in [21], “between Bernoulli distributed random variables [...]” turns it into bullshit.

Section C in [16] is another “highlight”: the authors introduce a lot of notations, e.g. decision
function, adversarial strategies, etc., without ever really using them. Moreover, they write “We
leave details to the accompanying paper” (bottom of p.17) - but such a paper is not publicly
available and, as we have seen in the previous section, will never exist. When we didn’t find
the ”accompanying paper”, we tried to look at the original paper [15] which does contain some
more ”analysis”; however, since a closer look at it (for example, p.11) reminded us so much of
Trubbish [3], we, unfortunately, couldn’t proceed. In any case, we suggest Team Rocket to learn
elementary probability theory, see [7] for some good introduction.

Lying with statistics has a long tradition, see [6]. A classical example of misleading graphs
uses y-axes with different scales. By carefully adjusting the scales, one can produce surprising
trends where none exist or completely distort the facts. While this may seem like an obvious
manipulation, one can get away with it because people do not read information. Most people
see a graph and immediately conclude from the shape of the lines or bars, exactly as the person
who made the graph wants. We present a graph from [16] in Figure 1. This graph is supposed to
compare the maximal number of blocks in Bitcoin and the maximal number of rounds required
in Snowflake to guarantee a 10−20-safety. One can see that the different scales (in this case the
distances between the values 101, 102 and 103) give a false impression of the superiority of the
Snowflake protocol. More surprisingly, the curves of the Snowflake protocol indicate that for
f/n < 0.1 the number of rounds is negative (!).

Figure 1: A graphic from [16] supposed to compare the maximal number of blocks in Bitcoin
and the maximal number of rounds required by Snowflake to guarantee an 10−20-safety.
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7 Closing words

Let us close with a tweet by one of the authors of [16] who is or was Associated Professor at
Cornell University giving insights in the usual conversations in Team Rocket:

Meanwhile, at the Team Rocket household:

”What are you working on dad?”

”Nothing, just outdoing that Satoshi fellow on every front, how was your day?”13
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