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Abstract1—Accurate clock synchronization is important in many 
distributed applications. Standard algorithms, such as the 
Network Time Protocol (NTP), essentially rely on pairwise offset 
estimation between adjacent nodes. Some recent work introduced 
more elaborate algorithms for clock offset estimation, which take 
into account the algebraic constraints imposed on the sum of 
offsets over network cycles, using a least-squares framework. 
These algorithms are iterative and decentralized in nature, 
requiring several cycles of local communication among neighbors 
for convergence. In this paper, we extend this approach towards 
a sequential estimation framework, which allows to incorporate 
initial time estimates along with their uncertainty, as well as 
multiple rounds of pairwise measurements. We propose a 
decentralized implementation of the estimation algorithm that 
employs only local broadcasts and establish its convergence to the 
optimal centralized solution. We also present some simulation 
results to illustrate the performance benefits of the suggested 
algorithms.  
 

Keywords: network clock synchronization; decentralized 
algorithms; Kalman filtering; recursive estimation. 

I.  INTRODUCTION  
Accurate clock synchronization has been extensive studied 

and applied in the context of communication networks, from 
the Interent  [10] to sensor networks  [17]. The task of 
synchronizing clocks in distributed systems is usually 
accomplished via the exchange of time-stamped messages 
(probe packets) between the distributed entities in order to 
coordinate their time. There is a large literature on how to 
synchronize clocks in traditional networked systems; among 
these, the “Network Time Protocol” (NTP) is the most widely 
accepted standard for synchronizing clocks over the Internet 
 [10],  [11]. This protocol essentially uses a so-called 
hierarchical approach by sending probe messages along a 
layered spanning tree of the network. 

More recently, a novel approach for time synchronization 
termed CTP – Classless Time Protocol  [4] was proposed. This 
non-hierarchical approach exploits convex optimization theory 
in order to minimize a quadratic objective function of clock 
offsets. It was shown that CTP substantially outperforms 
hierarchical schemes such as NTP in terms of clock accuracy 
without increasing complexity. An related approach that relies 
on Least-Squares fit was proposed in  [3],  [15]. The accuracy of 
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clock synchronization was improved by exploiting global 
network-wide constraints (i.e., the relative offsets must sum up 
to zero over network loops). The central characteristic of these 
methods is the use of a distributed algorithm that requires only 
local broadcasts among neighboring nodes. The algorithms are 
iterative, and typically converge within a small number or 
rounds. The work in  [1] extends the same LS approach to a 
Weighted Least-Squares (WLS) framework, where each 
measurement may be assigned a different weight.  

It is interesting to note, following  [1], that the time 
synchronization problem is mathematically equivalent to a 
general class of distributed estimation problem of additive 
quantities over a network, a class that includes sensor 
localization over a sensor network (in Cartesian coordinates). 

The basic Least-Squares framework of  [3] considered the 
offset estimation problem using only a single set of 
measurements. Our goal here is to extend this framework into a 
sequential estimation one, which handles prior estimates of 
clock offsets as well as multiple measurement sets. These goals 
can be cast in the framework of Kalman Filtering, which 
indeed readily provides an optimal centralized solution. 
However, as the obtained equations are not readily amenable to 
a decentralized implementation, we resort to the equivalent 
least-squares formulation, and employ localized least squares 
iterations to obtain a decentralized algorithm. This algorithm 
employs only local broadcasts between neighbors when the 
initial covariance matrix is diagonal.  

A rich literature exists on distributed implementation of the 
Kalman Filter (KF), dating back to  [5],  [14]. More recent work, 
such as  [12], focused on network structures and developed 
consensus-based algorithms that employ only local 
communication. This line of work allows measurement to be 
processed locally, however each node keeps a copy of the 
entire state vector. In our framework, each node keeps only 
data related to its own offset. Interesting work in this line is 
presented in  [9], where decentralized approximation schemes 
are presented. Our goal here is to develop exact algorithms, for 
the more limited problem that we consider. 

Finally, we present simulation results over several network 
topologies for evaluating and comparing the accuracy of the 
proposed time synchronization schemes. We provide several 
interesting comparisons, where the Kalman Filter approach 
outperforms the existing algorithms.  
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The paper is organized as follows. In section II, we describe 
the model and formulate the estimation problem in state-space 
form. In section III, we present an iterative, decentralized 
algorithm that combines prior offset estimates with a single set 
of measurements, and establish its convergence. While the 
development is carried out for a general initial state covariance 
matrix, the local communication structure is maintained only if 
this matrix is diagonal. Hence, a recursive extension of this 
algorithm to the case of multiple measurement sets is not 
apparent. The case of multiple measurement sets is taken up in 
Section IV, where an exact algorithm is developed. We also 
consider for comparison purposes a simple sub-optimal 
algorithm that neglects the off-diagonal terms of the inverse 
covariance matrix. Section V presents some simulation results 
that evaluate and compare the performance of the proposed 
algorithms. Finally, the conclusions and some notes on future 
directions are reported in section VI. 

II. MODEL AND PROBLEM DEFINITIONS 
We model the network as a directed graph ( ),G V= Ε  with 

N V=  nodes denoted { }1 2, ,..., NΛ Λ Λ , and m = Ε  edges. 
Each edge represents the ability to transmit and receive packets 
between the corresponding pair of nodes. The edge connecting 
nodes iΛ  and jΛ  is denoted by ije . We assume that all the 
edges are bidirectional, so that ije ∈Ε  implies jie ∈Ε , and that 
the network graph is connected, namely there exists a path 
between any pair of nodes in the network. Denote by iN  the 
set of nodes which are the neighbors of iΛ , i.e., one edge away 
from node iΛ , and let | |iN  be the number of such neighbors. 
We assume that each node in the network keeps a local clock, 
and our goal is to estimate the time offset of each clock with 
respect to some global reference. Without loss of generality, we 
may assign node 1Λ  as the reference time node, so that all 
clock offsets are estimated with respect to this node's clock.  

A. Clock Model 
A standard model for the clock drift at a node follows the 

linear form: ( )i i iT t tα τ= + , where iα  and iτ  are the skew (rate 
deviation) and the offset parameters respectively, t  is the real 
time (or reference time) and ( )iT t  is the local time at node iΛ . 
This model is known as the two parameters linear model (see 
 [15] and the references therein). As node 1 serves as the 
reference, we have by default 1 0τ =  and 1 1α = . 

We focus here on the simplified model where all clocks run 
at the same speed, so that there is no skew ( 1iα =  for all i ). 
This assumption is appropriate when the measurement time 
span is short so that the rate deviation is small relative to the 
skew.  

B. Measurement Model 
We consider a two-way offset measurement scheme. Each 

network node ( , 1, 2,...,i i NΛ = ) sends probe packets to each 
of its neighbors. Upon sending a packet mk  the sender iΛ  

stamps the packet with its local time ( )i mT k , and the receiver 

jΛ  stamps the packet upon receiving it with its local time 

( )j mR k . Then, node jΛ  retransmits the packet back to the 
source with time stamp ( )j mT k , and the source stamps its local 
time ( )i mR k  when receiving the packet back. We thus obtain 

( ) ( ) ( ) .ij j m i m ij m i j ijT R k T k D k τ τ ε∆ − = − + +  

Here ( )ij mD k  is the propagation delay over link ije ,  ijε  is an 
additive noise that represents the random queuing delay (and 
the other unknown influences) and j iτ τ−  is the difference 
between the two clock offsets. Assuming that 

( ) ( )ij m ji mD k D k=  (symmetric propagation delay) we obtain: 

 ( )1ˆ
2ij ij ji j i ijO T T vτ τ∆ − ∆ = − +  (1) 

where ( ) / 2ij ij jiv ε ε= −  is the effective measurement noise. 

We shall assume that ijv  is zero mean, with covariance 0ijr > . 

Remark: In practice, the effective measurement ˆ
ijO  may be 

obtained by processing several subsequent packet exchanges. 
One way to combine these successive measurements is to 
consider their average. More refined methods such as a 
minimum filter may favor measurements that reflect smaller 
delays, to account for changing congestion conditions (cf. 
 [10]). In any case, the combined measurement is taken to be of 
the above form. 

C. State-Space Equations 
Our objective is to synchronize all the clocks in the network 

with the reference time. This is equivalent to estimating the 
offset iτ  at each network node. We start by formulating the 
statistical estimation problem in state space form. Define the 
state as the column vector ( )2 ,... T

Nx τ τ  (recall that 1 0τ =  by 
definition). As x is assumed to be constant for the time frame 
of interest, we can write ( 1) ( )x n x n+ = , where 0n ≥  is the 
time (or step) index. The initial state (0)x  is assumed to have 
known first and second order statistics: [ ] 0(0)E x x= , 

[ ] 0cov (0)x P= . This allows to take into account prior 
information about the accuracy of the initial clock offsets in 
different nodes. For example, the network may contain several 
reference nodes which keep accurate time, which translates to 
small covariance entries in 0P .  

The effective measurement for each pair of neighboring 
nodes is given by equation (1). Thus, ˆ

ijO  measures the offset 
difference for these nodes, plus an additive noise ijv . The noise  

ijv  is assumed to have zero mean, with finite covariance 

0ijr > , and is independent across node pairs. We collect the 

individual measurements in a column vector ˆ( , )ijy O ij= ∈Ε , 
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which represents a single measurement set. We assume that a 
new measurement set ( )y n  is obtained at each step 1n ≥ . We 
note that n  need not refer to actual time, but rather corresponds 
to the epoch when the n-th measurement set ( )y n  become 
available. 

To express the measurement equation in vector form, 
define the graph incidence matrix A  whose dimensions are N  
(nodes) ×  m  (edges), and where in the row corresponding to 
node iΛ , we have an entry +1 for all edges ije  originating in 

iΛ , an entry -1 for all edges jie  terminating in iΛ , and 0 
otherwise. For a connected graph, the rank of the incidence 
matrix is 1N − . Thus, deleting any row from the incidence 
matrix yields a full row rank matrix, which is called the 
reduced incidence matrix. Here, we will work with the 
( )1N m− ×  matrix A  obtained by deleting the row 
corresponding to the reference node 1Λ .  

The model may now be summarized in state space form: 

( ) ( 1)
; 1

( ) ( ) ( )T

x n x n
n

y n A x n v n
= −⎧

≥⎨
= +⎩

 

with initial conditions [ ] 0(0)E x x= , [ ] 0cov (0)x P= . The 

measurement noise sequence { }( )v n  is assumed to be a white 
noise sequence with zero mean and covariance ( ) 0R n R= > . 
We further assume that there is no correlation between the 
measurement noise over different links, so that 

diag{ , }ijR r ij E= ∈ , as a diagonal matrix with elements 0ijr >  
along the diagonal. Finally, the measurement noise and initial 
state (0)x  are uncorrelated.  

Our goal is to estimate the offset vector ( )x n x=  based on 
the measurement sets (1), , ( )y y n…  and the prior information 

0 0,x P . This is of course a classical problem in sequential 
estimation theory. As is well known, the Kalman filter provides 
the optimal linear solution the MMSE (Minimal Mean Square 
Error) sense, which further coincides with the optimal 
(conditional expectation) solution under the Gaussian 
assumption. However, while the centralized KF equations are 
easily written, it is not readily seen how they may distributed. 
We thus proceed to develop distributed algorithms that 
converge to the optimal KF solution.  

III. SINGLE MEASUREMENT SET 
We start by considering a single measurement update, 

namely the problem of estimating (1)x x=  based on the 
measurement (1)y y=  and the prior information 0 0,x P . As is 
well known (e.g.,  [7], Section 5.3), the KF equations are 
equivalently obtained as a solution to a Least-Squares 
deterministic problem, which in our case reduces to the 
minimum of the following objective function: 

1 1
0 0 0( ) ( ) ( ) ( ) ( )T T T TJ x x x P x x y A x R y A x− −= − − + − −  (2) 

The first term is related to the initial information regarding 
the clock offsets, whereas the second term is associated with 
the single set of measurements and its corresponding 
covariance matrix R .  

In the development of a distributed algorithm, we will find 
it more convenient to manipulate the above deterministic LS 
problem rather than starting with the KF equations. 

A. Baseline Algorithm 
We first review the existing algorithm introduced in  [3], 

 [4], [15]. In this case, the objective function is given by: 

( )2

,

ˆ( ) ( ) ( )

i

T T T
ji i j

i j
j N

J x y A x y A x O τ τ
∈

= − − = − +∑  

The first order optimality conditions are 

( ) ( ) ( )ˆ2 0
i

T
ji i jii

j Ni

J AA x A y O τ τ
τ ∈

∂
= − = − − + =

∂ ∑  

From this, we obtain:                           

 ( )1 ˆ
i

i ji j
j Ni

O
N

τ τ
∈

= ⋅ +∑  (3) 

The above equation must be satisfied by the optimal 
solution of the offset estimation problem. While this is a set of 
linear equations, a direct solution cannot be carried out in a 
decentralized manner. Instead, a decentralized iterative 
algorithm was suggested and shown to convergence to the 
optimal centralized solution. This algorithm simply iterates the 
above equation, which can be simply interpreted as follows. 
Each node obtains from its neighbors their current estimates for 
their own clock offsets, and computes its offset estimate as the 
average of all its neighbors' estimates plus the corresponding 
relative measurements. This procedure is the same as in  [3], 
 [15] and one can easily show that this is equivalent to the 
algorithm in  [4].  

Our objective is to extend the previous result to a wider 
framework and we will obtain this procedure as a special case 
of a more general algorithm. 

Next, we will consider the more general framework that 
includes the initial covariance matrix in the objective function 
in addition to a weighting matrix 1R−  . The analysis is divided 
in two cases: non-diagonal and diagonal initial covariance 
matrix. 

B. Adding Initial Conditions and Measurement Weights 
We now consider the distributed solution of equation (2), 

that incorporates the initial estimate 0x  with covariance 0P , as 
well as possibly different weights for the measurement as 
expressed by the covariance matrix R . We develop an iterative 
algorithm, and establish its convergence to the optimal solution 
of (2). However, it will be seen that the algorithm is not truly 
distributed, in the sense that each node must receive data from 
non-neighboring nodes, unless the initial covariance matrix is 
diagonal. The latter case will be considered in the next 
subsection. 
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Proceeding similarly to above, the first-order optimality 
conditions for (2) are 

( ) ( ) ( )1
0

1

1 1 ˆ (0) 0
i i

N

i ji j k kik
j N j N ki ji ji

J O P
r r

τ τ τ τ
τ

−

∈ ∈ =

∂
= − + + − =

∂ ∑ ∑ ∑
 

or, equivalently, 

( ) ( ) ( ) ( )1 1
0 0

1

1 1 ˆ (0) (0)
i

N

i ji j i m mii im
j N mi ji

m i

O P P
I r

τ τ τ τ τ− −

∈ =
≠

⎡ ⎤
⎢ ⎥= + + − −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑ (4) 

where 

( )1
0

1 .
i

i ii
j N ji

I P
r

−

∈

= +∑  

These equations motivate the following synchronous iterative 
algorithm for their solution:  

 
( ) ( )

( ) ( )

( 1) ( ) 1
0

1 ( )
0

1

1 1 ˆˆ ˆ (0)

ˆ (0)

[

]
i

k k
i ji j iii

j Ni ji

N
k

m mim
m
m i

O P
I r

P

τ τ τ

τ τ

+ −

∈

−

=
≠

= + + −

− −

∑

∑

…
  (5) 

with initialization (0)ˆ (0), 2,3,...i i i Nτ τ= = . Here, 0k ≥  is the 
iteration number. This algorithm can be interpreted as a the 
classical Jacobi iteration for the solution of the linear equations 
(5), or, equivalently, as a local least-squares algorithm where 
each node minimizes at each iteration the objective function (2) 
over its own offset, given the current offset estimates of the 
other nodes.  

The following convergence result is next established. 

Theorem 1.  Suppose that: 
(1) The matrix 1R−  is diagonal and Positive Semi-Definite, that 
is: ( ) 1

0 ,jir i j
−

≤ < ∞ ∀  . 

(2) The initial covariance matrix 0P  is an M-matrix, namely: 

( )

( ) ( ) ( )

1
0

1 1
0 0

0

0 0

ij
j

ii ij

P

P and P i j

−

− −

⎧ ≥
⎪
⎨
⎪ ≥ ≤ ≠
⎩

∑
 

(3) The clock adjustment operation in (5) is applied 
synchronously by all nodes ( 2,3,...i N= ) in all iterations. 

Then, the iterated estimators ( )ˆ ( ) 2,3,...k
i n i Nτ =  converge (as 

k →∞ ) to the optimal offsets that minimize the objective 
function in (2). 
The proof is provided in the Appendix. 

The main problem with the last iterative algorithm is that, 
in general, each node needs to communicate with all the other 
nodes and not only with its neighbors. Thus, each node is 
required to be aware of the global topology of the network, and 
the algorithm does not satisfy the requirement of local 
information exchanges only. Fortunately, this problem does not 
exist when initial covariance matrix 0P  is diagonal. 

C. Diagonal 0P  

We henceforth specialize the discussion to the case where 
the initial covariance matrix 0P  (hence its inverse 1

0P − ) is 
diagonal, with diagonal elements ( )ip . This will be the case 
when the initial estimates of clock skews are obtained by the 
different nodes independently. For example, some nodes may 
have a GPS receivers which allows then to obtain an accurate 
estimate of the time. Or, starting from an initially accurate 
estimate, each node has after some time an added uncertainty 
due to the estimated drift of its clock.  

The decentralized iterative procedure in (5) now reduces to: 

 ( )( 1) ( ) (0)1 1 ˆˆ ˆ
1 1

i

i

k k i
i ji j

j N ji i

j N ji i

O
r p

r p

ττ τ+

∈

∈

⎡ ⎤
= ⋅ + +⎢ ⎥

⎢ ⎥⎣ ⎦+
∑

∑
 (6) 

In words, iτ  is computed at each iteration as a weighted 
average between the modified estimates obtained from adjacent 
nodes, and its prior estimate. Observe that if the matrix 1

0P −  is 
equal to zero and 1R I− = , we obtain the equation (3) as in the 
basic LS case described above. This algorithm requires only 
local broadcasts between adjacent nodes. Evidently, the 
convergence result in Theorem 1 applies here as a special case.  

IV. MUTILPLE MEASUREMENT SETS 
In the previous section we have developed a decentralized 

algorithm for the case of a single measurement set, under the 
assumption that 0P  is diagonal. We next consider the case 
when multiple measurement sets become available 
sequentially, with the goal of presenting a recursive version of 
the previous decentralized algorithms. As its turns out, a simple 
recursive extension of the single-measurement case, in the style 
of the Kalman Filter, will not work here. The reason is that 
even if the initial covariance matrix 0P  is diagonal, which we 
assume, after the first iteration the state covariance matrix 1P  
will not be diagonal any more (as can be easily verified, the 
estimates will become correlated). Thus, although the iterative 
procedure in (5) can be formally repeated, it will not be 
distributed any more, as each node has to communicate and 
store information related to all the other nodes over the 
network and not only with the one-hop neighbors. 

Our objective is therefore to derive an alternative recursion 
that is suitable for decentralized implementation. This is done 
in the next subsection. For comparison purposes we also 
mention, in the subsequent subsection, an approximate 
algorithm that simply neglects the off-diagonal elements of the 
covariance matrix after each measurement update.     

A. Optimal Decentralized Algorithm 
For the multiple measurement update case, the equivalent 

Least Squares objective function is given by:  

 
1 1

0 0 0
1

( ) ( ) ( ) ( ( ) ) ( ( ) )
n

T T T T

k

J n x x P x x y k A x R y k A x− −

=

= − − + − −∑ (7) 
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For notational simplicity assume that the matrix 1R−  is 
identical for each set of measurements. We propose the 
following iterative algorithm: 

( )

( ) ( )

( )

( 1) 1 ( ) ( )

( )

1
0

1 ˆˆ ˆ ˆ ˆ( ) ( 1) ( ) [ ( 1) ( ) ]

1 ˆ ˆ1 [ ( ) ( 1) ] ,

1 1( ) ( 1) , 1

{

}
i

i

i i

k n k
i i i ji i j

j N ji

k
j j

j N ji

i i ii
j N j Nji ji

n n I n O n n
r

n n n
r

I n I n P n n
r r

τ τ τ τ

τ τ

+ −

∈

∈

−

∈ ∈

= − + ⋅ ⋅ − − −

+ − ⋅ ⋅ − −

= − + = + ⋅ ≥

∑

∑

∑ ∑

(8) 

for 2,3,..., ,i N=  initialized with (0)ˆ (0)i iτ τ= , 1
0(0) ( )i iiI P−= . 

The above set of equations is a decentralized, synchronous 
and recursive algorithm that computes at each step the 
estimated offsets and their corresponding error variances. The 
main advantage of this algorithm is its local nature; each 
network node needs to communicate only with its neighbors.  

We now describe in words the iterative procedure in (8). At 
time n , we assume that the estimate of ˆ ( 1)i nτ −  is given. 
Then, ( )ˆ ( ) 1, 2,...k

i n kτ =  is computed based on ˆ ( 1)i nτ −  and 
the last measurement set ( )y n . We assume that a sufficient 
number of iterations is performed at each time n , so that the 
estimate ˆ ( )i nτ  is accurate. 

Remarks: 

1. We point out that the suggested recursion slightly deviates 
from a standard recursive estimation scheme due to the 
presence of n  (time or measurement count) as a factor in 
the recursion. 

2. It may be shown that the elements of ( )iI n  are the 
diagonal entries of the inverse covariance matrix in the 
Kalman filter equations, namely 1( ) ( )i n iiI n P−= . In fact, the 
above iteration for ( )iI n  is the same as the iteration over 
the diagonal elements in the information form of the 
Kalman covariance update:  

                          ( ) ( )1 1 1
1

T
n nP P AR A− − −
+ = +                        (9) 

Observe however that we do not compute the non-diagonal 
elements of the inverse covariance matrix. 

The proposed algorithm may be derived is by 
differentiating ( 1)J n −  and ( )J n  with respect to the offsets 
vector x  and set the partial derivatives to zero. The algebraic 
details (which can be found in  [2]) are omitted since the 
procedure is similar to the previous case. 

An alternative derivation, also presented in  [2], may start 
with the KF equations in information form. However, the 
recursion in (8) is not equivalent to the KF recursion, and is not 
readily seen from these equations. 

We next address the convergence the set of equations in (8) 
to the optimal centralized solution. 

Theorem 2.   Suppose that: 

(1) Assumptions (a) and (b) from Theorem 1 hold. 
(2) The clock adjustment operation in (8) is applied 
synchronously by all nodes ( 2,3,...i N= ) in all iterations, 
recursively for n  sets of measurements. 
(3) A sufficient number of iterations is performed after each 
measurement set n , so that ( )ˆ ( )k

i nτ  converges to ˆ ( )i nτ . 

Then, for each 1n ≥ , the iterated estimators 
( )ˆ ( ) 2,3,...k

i n i Nτ =  converge (as k →∞ ) to the optimal 
offsets that minimize the objective function in (7). 

The proof is provided in the Appendix. 

Next, we propose a simple sub-optimal algorithm for the 
case where multiple sets of measurements are available. 

B. A Sub-Optimal Decentralized Algorithm 
For the case where 0P  is non-diagonal, we obtained in (5)) 

that the estimated offset of node iΛ  depends on all the other 
offsets and not only on those of its neighbors. One can consider  
the naïve sub-optimal algorithm that neglects the off-diagonal 
terms of the inverse covariance matrix: 

( )
( ) ( )( 1) ( ) 1

0
1

0

1 1 ˆˆ ˆ (0)1
i

i

k k
i ji j iii

j N ji
ii

j N ji

O P
rP

r

τ τ τ+ −

− ∈

∈

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦+
∑

∑
 

The decentralized sub-optimal recursive algorithm for the 
multiple measurement scenario is given by: 

( )
( )

( 1)

( ) ( )

1
0

ˆ ˆ( ) ( 1)

1 1 ˆ ˆ ˆ( 1) ( )1
i

i

k
i i

n k
ji i j

j N ji
ii

j N ji

n n

O n n
rP n

r

τ τ

τ τ

+

− ∈

∈

= −

⎧ ⎫⎪ ⎪⎡ ⎤+ ⋅ ⋅ − − −⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭+ ⋅
∑

∑

  

Here, we may neglect the off-diagonal terms before inverting 
the information matrix ( ) 1

1nP −
−

, in order to reduce the algorithm 
complexity. In this case, we will invert a diagonal matrix and 
hence the time computation will significantly decrease. 

V. NUMERICAL RESULTS 
    In this section, we implement some of the algorithms that 

we previously developed for typical problems and we compare 
the results with the existing algorithms. More extensive 
comparisons can be found in  [2]. The convergence rates of the 
decentralized algorithm are not presented here as convergence 
is achieved after a relatively small number of iterations and the 
results are very similar than  [4]. Consider two different 
network topologies: 

-  Network 1: a 400 node network with 997 edges. 

-  Network 2: a 170 node network with 1200 edges. 

    The first case we analyze is the one where 10% of the 
nodes are perfectly synchronized to the global time (through a 
GPS satellite receiver for example), and the remainder are not 
synchronized at all. Namely, for these arbitrary 40 nodes we 
take the initial variances to be very small (0.01) and the offsets 
equal to zero, and for the rest of the nodes, the variances tend 
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to infinity and the offsets are randomly chosen according to a 
uniform distribution. The graphical comparison between the 
decentralized CTP algorithm (equation (3)) and the 
Decentralized Kalman Filter (DKF) (equation (6)) is presented 
in Fig. 2. As expected, the DKF algorithm outperforms the 
decentralized CTP method in terms of clock accuracy. Fig. 2 
shows the fraction of nodes with clock offset with respect to 
the reference time node that is not grater than t  for the 
different algorithms. In other words, the y-axis represents the 
fraction of nodes with clock offset, relating to the global time, 
not greater than the value described by the x-axis. 
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Figure 1.  Comparison between the decentralized CTP and DKF algorithms 

(with 10% of nodes synchronized via GPS) in Network 1. 

The second part of this section is devoted to the comparison 
of the recursive Centralized Kalman Filter (CKF) algorithm to 
the Sub-Optimal Algorithm (SOA) that neglects the off-
diagonal terms of the inverse covariance matrix (see section V. 
B). We consider the topology of Network 2 and we check 
several values of n  (the number of measurements). The 
queuing delay is randomized in accordance with the Kalman 
Filter assumptions, namely normally distributed with zero 
mean and covariance matrix R : 

[ ] ( )0.01,12 0,delayR U Q N R∼ ∼  

In addition, we consider that 10% of the nodes are perfectly 
synchronized to the global time and the remainder are not 
synchronized at all (similar to the case in Fig. 2). In this 
analysis, we also compare the results to the Centralized Least-
Squares (CLS) algorithm. Fig. 3 presents the results for the 
offsets obtained by applying the optimal CKF method, the 
SOA and the CLS algorithms for two different values of n . As 
expected, the optimal algorithm gives the best results. The sub-
optimal algorithm gives relatively poor results but reduces the 
complexity and is not diverging. Moreover, we obtained that 
the sub-optimal algorithm is even worse (in terms of clock 
accuracy) than the basic centralized Least-Squares method 
(that does not take into account the initial covariance matrix). 
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Figure 2.  Comparison between CKF, SOA and CLS (with [ ]0.01,12R U∼  

and 0P I≠ ) in Network 2 for 1,50n = .   

VI. CONCLUSION 
In this paper, we have developed several decentralized 

algorithms for estimating the offset at each network node with 
respect to the reference time, utilizing a sequential estimation 
framework. The essential characteristic of these algorithms is 
their decentralized nature; each node can estimate its clock 
offset by exchanging packets with its one-hop neighbors only. 
We extend the existing Least-Squares based algorithms so that 
we may assign different weights to the measurements 
according to their accuracy, include a-priori information, and 
provide a recursive estimation scheme. The main algorithm is 
both decentralized (requires only local broadcasts), recursive 
(works in on-line applications) and converges to the optimal 
centralized solution. Finally, some numerical results were 
presented to show that, as expected, the proposed algorithm 
outperforms the existing methods. 

    We close the paper by mentioning several extensions of 
interest. A discount factor is easily incorporated into the 
objective function (7) in order to give a higher weight to the 
more recent measurements, and leads to similar algorithms. 
This will be useful when the offsets are time-varying. The 
proposed algorithms may also be extended to handle dynamic 
changes in the communication topology by considering 
temporary link failures, following the treatment in  [1]. Further 
details related to these two issues may be found in  [2]. One 
may also consider more elaborate state dynamics to model 
possible time variations in the clock offsets. The simplest is 
adding a white system noise in the state space model. 
Interestingly, the results of this paper are not easily extendable 
to this model. Another major issue is the incorporation of the 
clock skew parameter into the clock model (see section II. A). 
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These scenarios were partially investigated in  [2] and may be 
considered as directions for future research. 

APPENDIX 
Proof of Theorem 1: Let us recall that the general objective 
function is given by: 
 

1 1
0 0 0( ) ( ) ( ) ( )T T T TJ x x P x x y A x R y A x− −= − − + − −  

 
Let us analyze the convergence properties of the general case, 
where 0P   is not necessarily assumed to be a diagonal matrix. 
We recall that iteration (5) cannot be easily decentralized 
when 0P  is not diagonal as we previously explained. However, 
the iteration is still well defined mathematically. 
    The synchronous iteration can be written in vector form: 
 

( ) ( )1( 1) ( ) 1 ( ) 1 1 1 ( )
0 0 0ˆ ˆ ˆ ˆk k T k kD P AR A AR y P x Pτ τ τ τ

−+ − − − −= − + − − +

Here:        

( ) ( ) ( ) ( )11
01

0

1

0
0

i

ijji
ij ijj N

i j P i jrD P
otherwise

otherwise

−−
−

∈

⎧ =⎪ ⎧ =⎪ ⎪= =⎨ ⎨
⎪ ⎪⎩
⎪⎩

∑  

The optimal solution (equivalent to performing the centralized 
protocol) is given by: 
 

( ) ( )1* 1 1 1 1
0 0 0

TAR A P AR y P xτ
−− − − −= + +  

Let us define: ( ) ( ) *ˆk kτ τ τ− . Then we obtain after some 
manipulations: 

( 1) ( )k kMτ τ+ =  
where:             ( ) ( )1 1 1

0 0
TM I D P AR A P

− − −− + +  

Thus, the convergence of the sequence ( )ˆ kτ  to *τ  is equivalent 
to the convergence of ( )kτ  to the zero vector, which is 
determined by the matrix M . The necessary and sufficient 
condition for this convergence is that the spectral radius of M  
is strictly smaller than 1. The following result is well known 
(see, e.g.,  [6], chapter 6). 
 
Proposition 1. 
Consider a non-negative square matrix A  with the following 
properties: 
a) All the row sums of A  are smaller or equal than 1. 
b) At least in one row this sum is strictly smaller than 1. 
c) The matrix A  is irreducible (i.e., there exists a path from 

any node to any other node in the network). 
Then, ( ) 1Aρ < . 
According to Proposition 1, ( ) 0kτ →  if the sufficient 
conditions apply to the matrix M . In order to show that the 
spectral radius of M  is strictly smaller than 1, we will require 
that the matrix M  is both non-negative and sub-stochastic 
(the row sums are smaller than one).  
     The elements of the matrix M  can be determined by 
inspection as the following: 0iiM = , and 

( ) ( )
( ) ( )

( )
( ) ( )

11
0

1 1
0

1
0

1 1
0

,

i

i

jiij

ji ii
j N

ij

ij

ji ii
j N

P r
i j and i j are neighbors

r P
M

P
otherwise

r P

−−

− −

∈

−

− −

∈

⎧ − +
⎪ ≠⎪ +⎪⎪= ⎨

−⎪
⎪
⎪ +
⎪⎩

∑

∑

 

    Let us find the conditions for the row sums of the matrix 
M  to be smaller than 1: 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

11 1
0 0

1 1
0

1 1
0

1 1
0

i i

i

i

i

jiij ij
j N j N

j i
ijj

ji ii
j N

ji ij
j N j i

ji ii
j N

P r P

M
r P

r P

r P

−− −

∈ ∉
≠

− −

∈

− −

∈ ∀ ≠
− −

∈

⎡ ⎤− + −⎢ ⎥⎣ ⎦
=

+

−
=

+

∑ ∑
∑

∑

∑ ∑

∑

 

It follows that 1ijj
M ≤∑  if and only if: ( )1

0 0
j ij

P − ≥∑ . 

In other words, we obtained that the necessary condition is 
that for each node iΛ , the row sum of the matrix 1

0P −  has to 
be non-negative.  
    Requiring that all the entries of the matrix M  are non-
negative leads to: 

( ) ( ) ( )1 1
0 00; 0

ii ij
P P i j− −≥ ≤ ≠  

 
Hence, we can write:  ( ) ( )1 1

0 0 0
j iii ij

P P− −
∀ ≠

≥ − ≥∑  

The above requirement can be seen as a diagonal dominance 
condition over the matrix 1

0P − . 
 In the case that the node iΛ  is adjacent to the reference node, 
the corresponding row sum of the M  matrix is given by: 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 11 1 1
0 1 0 01

1 1
0

1 11 1
0 1 0 1

1 1
0

1

i i

i

i

i

ji iij i ij
j N j N

j i

ji ii
j N

ji iij i
j N j i

ji ii
j N

r P r P P

r P

r P r P

r P

− −− − −

∈ ∉
≠

− −

∈

− −− −

∈ ∀ ≠

− −

∈

⎡ ⎤ ⎡ ⎤− − − + −⎢ ⎥ ⎣ ⎦⎣ ⎦

+

⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎣ ⎦⎣ ⎦= <
+

∑ ∑

∑

∑ ∑

∑

     

In the case that iΛ  is not adjacent to the reference node, the 
corresponding row sum of the M  matrix is given by: 

( ) ( ) ( )

( ) ( )

1 1 1
0 0 1

1 1
0

1i

i

ji ij i
j N j i

ji ii
j N

r P P

r P

− − −

∈ ∀ ≠

− −

∈

⎡ ⎤
− −⎢ ⎥

⎣ ⎦ <
+

∑ ∑

∑
 

Hence, we have shown that at least in one row, the row sum of 
M  is strictly smaller than 1. Actually, we proved that the 
iteration matrix verifies all the sufficient conditions for 
convergence. Namely, the row sums of the matrix M  are less 
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or equal than 1 (and at least in one row this sum is strictly 
smaller than 1), the matrix M  is irreducible and all its entries 
are non-negative. 
As a result, we proved the convergence of the decentralized 
algorithm to the optimal solution performed by the centralized 
Kalman Filter for the most general case.  
To sum up, the convergence conditions are given by:  

( ) ( ) ( ) ( )1 1 1
0 0 00; 0; 0

j ij ii ij
P P P i j− − −≥ ≥ ≤ ≠∑  
                                                                                        ■ 

 
Proof of Theorem 2: The case of 1n =  was treated in 
Theorem 1. Our proof relies on the following lemma. 
 
Lemma 1. 
Suppose that 0P  satisfies the convergence conditions of 
Theorem 1, namely 0P  is an M-matrix. Let nP  be computed 
using (9), then nP  is an M-matrix  for all 1n ≥ . 
Proof 
Equation (9) corresponds to the measurement update equation 
of the inverse covariance matrix of the KF. Recalling that the 
matrix 1R−  is assumed to be diagonal, let us analyze the 
properties of the matrix 1 TAR A− . For the reduced incidence 
matrix, we have: 

1

1

1

TAR A v−

⎛ ⎞
⎜ ⎟ =⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Here, v  is a vector with non-negative components. The 
structure of the matrix 1 TAR A−  is as follows: 

( ) ( )1 10; 0T T

ii ij
AR A AR A− −> ≤  

The row sums are ( )1 0T
j ij

AR A− =∑  for each node iΛ  that is 

not adjacent to the reference node. Moreover, if iΛ  is adjacent 
to the reference, this sum is a strictly positive number. We 
conclude that if the a-priori inverse covariance matrix ( ) 1

1nP −
−

 
verifies the convergence conditions, then the a-posteriori 
inverse covariance matrix ( ) 1

nP −  will verify them too.  
                                                                                        ■ 

This lemma immediately implies the convergence of the 
recursive extension (for several measurement sets) of equation 
(5) to the optimal solution, where at each step, the new 
covariance matrix is computed according to (9). Since the 
iterations in (8) are equivalent to the procedure in (5), we 
obtain the claimed convergence in Theorem 2. 

                                                                                        ■ 
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